อักษร
อ่านว่า พาย เป็นสัญลักษณ์ที่
William Jones
ได้เริ่มใช้เป็นคนแรกเพื่อบอกอัตราส่วนระหว่างความยาว
เส้นรอบวงของวงกลมใดๆ
กับความยาวเส้นผ่าศูนย์กลางของวงกลมนั้น
ซึ่งวงกลมทุกวงจะมีอัตราส่วนดังกล่าวเท่ากันหมดคือ
3.1415.926
ประวัติศาสตร์ได้จารึกไว้ว่า เมื่อประมาณ 4,000
ปีก่อนนี้
นักคณิตศาสตร์ชาวบาบิโลนรู้จักคำนวณค่า
ได้ประมาณ 3.125
และนักคณิตศาสตร์ชาวอียิปต์ได้พบว่า
วงกลมก็ตามที่มีเส้นผ่าศูนย์กลางยาว
9 หน่วย
จะมีพื้นที่เท่ากับสี่เหลี่ยมจัตุรัสที่มีด้านยาว
8 หน่วย นั่นคือ 256/81 = 3.1604
Archimedes
นักคณิตศาสตร์ชาติกรีก
ซึ่งเคยมีชีวิต อยู่เมื่อ 2,250
ปีก่อนได้แสดงวิธีหาค่า
ในหนังสือ Measurement of a Circle
โดยคำนวณพื้นที่ของรูปหลายเหลี่ยมด้านเท่าที่บรรจุในวงกลม
และได้ค่า ว่าอยู่ระหว่าง 3.1408 กับ
3.1428 ในเวลาต่อมาอีกราว 400 ปี Ptolemy
นักดาราศาสตร์ผู้มีชื่อเสียงพบว่า มีค่า 317/120 = 3.141666
และในราวคริสต์ศตวรรษที่ 5 Tsu-Chung-Chih
ชาวจีนคำนวณค่า ได้ 3.1415926
ซึ่งนับว่าถูกต้องถึงทศนิยมตำแหน่งที่ 7
วงการคณิตศาสตร์ในสมัยโบราณถือกันว่าใครคำนวณค่า
ซึ่งได้ทศนิยมละเอียดยิ่งมีความสามารถมาก
L. Ceuben ชาวเนเธอร์แลนด์ คำนวณค่าได้จุดทศนิยมถึง 32
ตำแหน่ง และค่าที่เขาลำบากหามาได้นี้
ได้ถูกนำมาเรียงจารึกบนหลุมฝังศพของเขา
เมื่อเขาสิ้นชีวิต
ในปี พ.ศ. 2320 Le Conte de Buffon
พบว่าเขาสามารถหาค่า
ได้จากการทดลองโยนเข็มเล่มหนึ่งอย่างไม่ตั้งใจลงบนพื้นซึ่งเส้นขนาน
2 เส้น หากเข็มที่เขาใช้มีความยาว l
และระยะห่างระหว่างเส้นขนานเท่ากับ d โดยที่ l
< d
เขาพบว่าโอกาสที่เข็มจะพาดตัวตัดเส้นขนานเส้นหนึ่ง
มีค่าเท่ากับ 2 ดังนั้นเวลาเขาโยนเข็ม N ครั้ง
แล้วนับจำนวนครั้งที่เข็มพาดทับเส้นขนาน
สมมติว่าได้เท่ากับ n ก็แสดงว่า นั่นคือ =2lN/dn
กาลเวลาที่ผ่านไปได้ทำให้ความก้าวหน้าในการหาค่า
ได้พัฒนาดียิ่งขึ้นๆ ตามลำดับ
เมื่อ Newton และ Leibniz
สร้างวิชา Calculus ขึ้นมา
สูตรที่เขาใช้ในการหาค่า
คือ
แต่การหาค่า จากสูตรนี้
ต้องใช้เวลาในการหานานมาก
เพราะเทอมแต่ละเทอมในอนุกรมลู่เข้าสู่ศูนย์ช้ามาก
ในปี พ.ศ. 2249 Machin ใช้สูตร
คำนวณหาค่า
ถูกถึงทศนินมตำแหน่งที่ 100
แต่สูตรนี้จะให้ค่า
ผิดที่ทศนิยมตำแหน่งที่ 527
Newton เองเคยใช้สูตร... หาค่า
เขาคำนวณถึงทศนิยมตำแหน่งที่ 15
ก็เลิกทำเพราะรู้สึกว่าเสียเวลาที่จะทำงานอื่น
Euler นักคณิตศาสตร์ชาวสวิส ได้พบสูตรหาค่า
อีกหลายสูตร เช่น
และ
แต่สูตรทั้งสองนี้ไม่มีประสิทธิภาพนักในการหาค่า
เหตุผลหนึ่งที่นักคณิตศาสตร์ทุ่มเทคำนวณหาค่า
คือต้องการจะดูว่าตัวเลขจำนวนร้อย
จำนวนล้านตัว
ที่เป็นทศนิยมตามหลังเลขจำนวนเต็ม 3 นั้น
เริ่มซ้ำเมื่อไร
หากตัวเลขมีซ้ำเป็นช่วงๆ
นั่นหมายความว่า เราสามารถเขียน
เป็นอัตราส่วนระหว่างเลขจำนวนเต็มสองจำนวนได้ทันที
แต่ Legendre
ก็ได้พิสูจน์ให้โลกประจักษ์แล้วว่า นั้นเป็นเลขอตรรกยะ
เมื่อโลกก้าวเข้าสู่ยุคคอมพิวเตอร์
นักคณิตศาสตร์ก็เริ่มคำนวณหาค่า อีกโดยใช้คอมพิวเตอร์ช่วย ในปี พ.ศ.
2453 Ramanujan
นักคณิตศาสตร์ชาวอินเดียได้พบสูตร
ในปี พ.ศ. 2528 Gosper ได้ใช้สูตรของ Ramanujan
คำนวณค่า ถึง 17,526,200 ตำแหน่งทศนิยม
แต่สูตรของ Ramanujan
นี้มีจุดบกพร่องอยู่ที่ว่า
หากต้องการคำนวณ
ให้ละเอียดอีกเท่าตัว
จะต้องมีการเพิ่มจำนวนเทอมให้มากขึ้นอีก
2 เท่าตัว
ในปี พ.ศ. 2537 D.และ G. Chudnosky
แห่งมหาวิทยาลัย Columbia
เป็นนักคณิตศาสตร์ที่ได้ทุ่มเทความพยายามในการหาค่า
มาก เขาทั้งสองใช้สูตร
หาค่า ได้ทศนิยม 4,055,000,000 ตำแหน่ง
สถิติโลกในการหาค่า
ปัจจุบันเป็นของ Y. Kamada แห่งมหาวิทยาลัย Tokyo
ซึ่งคำนวณค่า ถึงทศนิยมตำแหน่งที่
6,442,450,938
เหตุใดคนเราจึงต้องคำนวณค่า
ให้ได้ละเอียดถึงปานนั้น....
เวลานักฟิสิกส์จะใช้ค่า
หาความยาวเส้นรอบวงของทางช้างเผือก
เขาใช้ ที่มีจุดทศนิยมเพียง 40
จุดก็เกินพอกับความต้องการแล้ว
นักคณิตศาสตร์เวลาจะแก้สมการโดยใช้คอมพิวเตอร์เท่าที่ปรากฏเขาก็ใช้คำ
เพียง 1,000 จุดทศนิยมก็เพียงพอเช่นกัน
คำตอบก็คือ....
เมื่อเราคำนวณค่า ละเอียดค่า
ที่ได้จะเป็นตัวทดสอบ
สามารถเป็นตัวทดสอบประสิทธิภาพการทำงานของคอมพิวเตอร์ได้
คอมพิวเตอร์เครื่องใดทำงานผิดพลาด จะให้ค่า ผิดทันที และคอมพิวเตอร์ใดคำนวณค่า
ได้ทศนิยมถูกต้องถึง 1,000
ล้านตำแหน่งแสดงว่าคอมพิวเตอร์เครื่องนั้นทำงานอย่างน้อย
1,000 ล้านจังหวะได้อย่างไม่ผิดพลาด hardware ของ
Gray Supercomputer เครื่องแรกๆ
ของโลกจึงเคยมีการพบว่า
ทำงานผิดเมื่อใช้คำนวณค่า
และนอกจากเหตุผลนี้แล้ว การวิจัยค่า
ให้ละเอียดยังช่วยกรตุ้นนักคณิตศาสตร์ให้พยายามหาเทคนิคคำนวณที่ดียิ่งขึ้นๆ
อีก
ดังนั้น
ความพยายามในการหาค่า
ให้ละเอียดจึงชัดเจนว่าจะเป็นเรื่องความพยายามที่จำเป็นอย่างไม่รู้จบ.... |
ไม่มีความคิดเห็น:
แสดงความคิดเห็น